Influence of leaf angle on photosynthesis and the xanthophyll cycle in the tropical tree species Acacia crassicarpa.
نویسندگان
چکیده
We examined the effects of artificially altering leaf angle of the tropical tree species Acacia crassicarpa (A. Cunn. ex Benth., Fabaceae) on light interception, leaf temperature and photosynthesis in the wet and dry seasons of tropical Australia. Reducing leaf angle from the natural near-vertical angle (90 degrees ) to 67.5, 45, 22.5 and 0 degrees greatly increased light interception and leaf temperature, and decreased photosynthetic activity. Compared with the 90 degrees phyllodes, net photosynthetic rates in the horizontal phyllodes decreased by 18 and 42% by the second day of leaf angle change in the wet and dry seasons, respectively. The corresponding values for Day 7 were 46 and 66%. Leaf angle reduction also altered the diurnal pattern of photosynthesis (from two peaks to one peak) and reduced daily CO2 fixation by 23-50% by Day 2 and by 50-75% by Day 7 in the dry season. In contrast, the xanthophyll cycle pool size in the phyllodes increased with leaf angle reduction. Thus, there are at least five major advantages to maintaining high leaf angle orientation in tropical tree species. First, it reduces excessive light interception. Second, it lowers leaf temperature. Third, it protects the photosynthetic apparatus against photodamage by excessive light. Fourth, it minimizes xanthophyll cycle activity and reduces the cost for xanthophyll biosynthesis. Finally, it enhances photosynthetic activity and helps to sustain high plant productivity.
منابع مشابه
Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).
Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. I...
متن کاملLitter Production Dynamic in relation to Climatic Factors in Tree Plantations
We studied litterfall dynamic of tree plantations in Dez River floodplain, at 14 to 15 years old. The plantations consist of Populus euphratica Oliv., Eucalyptus camaldulensis Dehnh., E. microtheca F. Muell, Acacia farnesiana (L.) Willd., A. salicina Lindl., A. saligna (Labill.) H. Wendl., A. stenophylla Benth. and Dalbergia sissoo Roxb. Litterfall was different between the tree species, and le...
متن کاملDiurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer.
Daily variations in photoprotective mechanisms were studied in sun and shade leaves of 40-year-old cork oak (Quercus suber L.) trees during early summer in Portugal. Although trees were not severely water stressed because predawn leaf water potentials remained high, photosynthesis and stomatal conductance decreased at midday. The midday depression in gas exchange was not reversed by short-term ...
متن کاملLeaf angle responds to nitrogen supply in eucalypt seedlings. Is it a photoprotective mechanism?
We examined the adjustment of leaf angle (L theta) and foliar chlorophyll and xanthophyll chemistry in Eucalyptus nitens (Deane and Maiden) Maiden seedlings maintained in various nitrogen (N)-supply treatments over a 6-month period. Adjustment of L theta toward the vertical was greatest under conditions of foliar N deficiency and became incrementally more horizontal with increasing foliar N con...
متن کاملLeaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance.
Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 23 18 شماره
صفحات -
تاریخ انتشار 2003